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An algorithm for calculation of optimum design variables of unit operations in chemical processes 
is proposed, based on a simulation programming system. It has all advantages of universal 
simulation algorithms: a possibility to solve processes with different topology without a change 
of the program, including recycles, and with various operatio~s. Instead of a direct change 
of design variables, the quantities are changed that are used in balance equations of the simula
tion algorithm. The problem can thus be linearized and solved by linear programming methods 
with regard to constraints involved in the balance equations. It is, however, necessary to recal
culate the design v.ariables of unit operations from the balance values. The Nagiev approach 
is used for simulation; the calculation can be modified even for sequential methods. The proposed 
optimization method was used previously in solving simple problems. 

Optimization of chemical processes is an important task from the economical point 
of view. Its solution involves many theoretical and practical difficulties. Optimization 
of a chemical process in a steady state can be treated as a problem of mathematical 
programming! : 

z = z(X) , <p(X) ~ 0, (1), (2) 

where X denotes n-dimensional vector of independent variables, z(X) objective 
function and <P(X) v-dimensional vector of constraints which must be satisfied by the 
sought values of the vector X of independent variables that extremize the objective 
function z(X). 

When the flow sheet of the process is known (i.e. the mode of mutual connection 
and types of unit operations), the independent variables in optimization of chemical 
processes are design and "operation" parameters (e.g. heat-exchange surfaces, volu
mes, and pressures). The number of independent variables is high even for relatively 
simple processes. Constraints are given by balance equations, mathematical models 
of apparatuses, and some other relations. In using the mathematical programming 
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methods, it is necessary to construct the objective function (1) and constraints (2) 
based on the knowledge of a particular process, which all is time-consuming. Every 
change in mutual connection of the apparatuses or in the type of unit operations 
namely results in a change of the objective function and of the constraints, which 
must be formulated anew. 

General-purpose simulation programs make it possible to formulate a number 
of problems of mathematical modelling of technological systems2

,3. It is therefore 
advantageous to use these programs in constructing the optimization algorithms. 
Their universality is helpful especially when the economical suitability of a series 
of modifications of a particular process is to be checked4

, e.g. heat exchange systems 
or the number of apparatuses in parallel. 

Analysis of the problem 

For an optimization algorithm it is possible to adopt mathematical models (pro
cess and economical) of unit operations as well as algorithms for calculation of 
physico-chemical properties of components3 ,5. 

A trivial optimization can be performed by repeated solution of the simulation 
problem without the use of further mathematical aids. The simulation algorithm 
is used only in calculating the objective function, and the influence of "manual" 
changes of the design variables or changes in the topology of the system is studied. 
An advantage of such a stepwise approximation and study is the possibility of using 
the simulation system without a further modification; a disadvantage is the dependen
ce on the experience of the designer, impossibility of automation and in most cases 
a longer time required for solution. After every modification the computation 
must be stopped, evaluated, and a further program must be specified. Although the 
consumption of the computer time can thus be minimized if the user is an ex
perienced designer, the tendency nowadays is to automate the work as much as 
possible, hence to shorten the time spent by the user. 

It is advantageous to combine the simulation algorithm with one of the determi
nistic optimization methods 6, e.g. a gradient method, existing in many modifications. 
A simplified block diagram is shown in Fig. 1. An objective, exhaustive comparison 
of these methods has not been made hitherto mainly for the reason that the optimiza
tion problems differ considerably from case to case. It is a common feature of all 
these methods that they use the simulation algorithm only in calculating the value 
of the objective function for a certain state of the optimized process given by specified 

design variables. 

Basic Concepts 

Combination of the simulation algorithm with deterministic optimization methods 
may be more advantageous than described above: The quantities involved directly 

Collect ion Czechoslov. Chem. Commun. /Vol. 38/ (1973) 



3546 Klemes, Dohnal, Vasek: 

in balance equations are changed; the problem can then be simply linearized and 
solved by linear programming methods. Thus, the balance equations can be used 
as constraints. 

The description of an integrated use of the simulation algorithm must be based 
on a detailed analysis of the method used in the simulation. The simulation calculation 

FIG. 1 

Simplified Block Diagram 
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is made either by sequential or simultaneous methods. The integrated use is elaborat
ed in the present work for the simultaneous approach based on the work of Nagiev 7 

and RosenB
• 

The basic terms (stream, node, component, design variable, etc.) were defined 
previouslys. We shall consider an optimized system with K nodes, M streams, and F 
components. To a stream coming out from the i-th node and entering the j-th node 
a specification vector, 51,i' is assigned, the components of which are the flow rates 
of all components and the heat flow. The component S~~] is the flow rate of d-th 
component in a stream leading from i-th to j-th node. The heat flow is considered as 
(F + 1)-st component and the surroundings as zeroth node. The total flow of d-th 
component through j-th node is given as 

K 

A~d] = I s\~] . (3) 
i=O 

The splitting fraction, a, defined by Nagiev 7 , for d-th component in a stream coming 
out from j"th node and entering r-th node is given as 

(4) 

Vector 0I,J with components a\~}, a\~}, ... , a~~/1] corresponds to the flow 
in the stream connecting the i-th and j-th nodes. We introduce matrix A, the ele
ments of which are vectors 0i,i (i, j = 1, 2, ... , K). Vector Pi' the components of which 
are design variables of the unit operation represented by the j-th node, is assigned 
to each node. The following balance equation for d-th component and j-th node7 

can be derived with the aid of Eqs (3) and (4): 

K 

A~d](1 - a~~]) - I A~d]af~l = sb~l· 
i=1 
i*i 

(5) 

This equation written for all K nodes (j = 1,2, ... , K) represents a system of linear 
equations for the d-th component with A~d] as unknowns. The splitting fractions 
a~~] and inlet feeds of the raw material, Sb~l, are known input data file. If this system 
is solved in turn with respect to all F + 1 components, the values of all components 
of the stream specification vectors are obtained. 

It was assumed in the preceding text that the splitting fractions of the output 
streams 0. J for all components and heat are known, hence 0i i depend only on vector 
Pi of p~ral~eters of i-th node: ' 

af~l = fi,J,d(Pi) , j = 1,2, ... , K, d = 1,2, ... , F + 1 . (6) 
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An example of such behaviour is a mixer (Fig. 2, node 4). The splitting fractions 
of output streams of many other node types depend, however, also on the components 
of specification vectors of streams which enter the node. The simulation computation 
must therefore proceed through stepwise approximation of the initial estimate (e.g. 
of the splitting fractions) and the change of stream specification vectors is checked9

• 

It is suitable and often necessary to speed up the convergence of the calculation by 
modified numerical methods1o. 

The objective function can be generally expressed in terms of design variable 
vectors, material prices, necessary energies, and auxiliary materials. We assume for 
simplicity that the objective function depends only on the vectors of design variables: 

(7) 

The splitting fractions, a~~l, are generally functions Of the specification vectors 
of streams entering i-th node and of the design variable vector of node Pi: 

(8) 

We assume that vectors 5 1 ,i, 52 ,i' ... , 5K , i are constant and it is possible to find 
an inverse function 

(9) 

Optimization Algorithm 

The block diagram of the optimization algorithm is analogous to the gradient (or 
direct search) method, Fig. 1. However, the internal structure of the design variable 
change block is principally different. 

The objective function depends on the design variable vectors (7), which can be 
in a "small" region expressed as functions of the splitting fractions (9). The objective 
function can be written as 

(lOa) 

FIG. 2 

A Chemical Process 

Collection Czechoslov. Chem. Commun. IVol. 38/ (1973) 



Study of Integrated Use of Simulation Algorithm 3549 

or in an abbreviated form 

Z = z(A) , (lOb) 

and expanded in Taylor series in the point of the initial estimate, {A}, of the elements 
of matrix A. By neglecting the second- and higher-order terms the equation can be 
linearized: 

Z = z({A}) + az({A}) (a[1] _ {a[ll}) + a [1] 1,1 1,1 
a1,l 

The zero-order term in this equation influences only the absolute value of the extre
mum. In searching the optimum it can be assumed that 

z({A}) -.f .i Ff az({~J) {a~?]} = O. 
l=lJ=ld=l aai,i 

(12) 

Eq. (11) can then be simplified to 

(13) 

Here the majority of the splitting fractions are equal to zero. The assumption in the 
general derivation that streams lead from the nodes to all other K nodes of the system 
is not fulfilled now. 

After having expressed the objective function Z as a function of the matrix A and 
linearized it in the region close to the supposed optimum, we search a matrix A 
that corresponds to the extremum of Z. Provided that small changes of the splitting 
fractions, G, result in negligible changes of the component flows, A, through the nodes 
each balance equation can be approximated by two inequalities: 

K 

A~d](l - a~?~) - I A~d]a~?i] ~ S~~1(1 + y) , (I4a) 
i*l 

(I4b) 

where y is a chosen positive number. The splitting fractions must fulfil, besides the 
constraints (I4a,b), also conditions following from the definition of the splitting 
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Fro. 3 
Block Diagram 
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fractions: 

K 

I a\~] = 1, i = 1,2, ... , K , d = 1, 2, ... , F + 1 . 
j=l 

(15) 

The linearized optimization problem can now be defined as follows: The splitting 
fractions that extremize the linear objective function (13) and fulfil the linear equations 
(15) as well as the inequalities (14a,b) are to be determined. This can be achieved 
by linear programming methods ll. If there are M streams in the diagram then 
the number of nonzero elements of matrix A does not exceed (F + 1) M. Since 
the complexity of the numerical solution increases rapidly with the number of un
knowns it is advantageous for the linearized problem (13)-(15) to make use of the 
principle of superposition of each component and heat I2 • This makes it possible to find 
the optimum values of the components and heat in the course of one iteration in
dependently, i.e. the linear programming problem with M variables is solved re
peatedly. From the calculated splitting fractions the corresponding vectors PI 
through PK are calculated with the aid of inverse functions of the type (9). The whole 
procedure is illustrated by the block diagram in Fig. 3. 

The described algorithm reduces the nonlinear optimization problem to repeated 
solution of a linear programming problem which, however, neglects the nonlinear 
relations involved in the unit operation models. Therefore,the nonlinear model is 
approximated with a sufficient accuracy only in a certain region close to the point A, 
in which the equations were linearized. In this point the fulfilment of all constraints 
including nonlinear ones is ensured by the preceding simulation. Consequently, 
no large changes of the design variables in the course of one iteration are allowed. 
Their change is limited by the value of y which must be sufficiently small. 

The described method does not ensure always the localization of the global extre
mum. In practice, however, even the determination of the local extremum or improve
ment of the initial estimate of design variables is important. 

The proposed 'algorithm makes it possible to linearize the problem of finding 
optimum values of design variables of unit operations of chemical processes. Balance 
equations are used as constraints in solving the problem by linear programming 
methods. Since the simulation calculation is based on the Nagiev approach, the 
optimization algorithm reflects its advantages and disadvantages. The suitability 
study of the described method for the treatment of complex real processes, problems 
of convergence, and derivation of an analogous algorithm based on a sequential 
simulation approach will be the subject of a further work. . 
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LIST OF SYMBOLS 

A matrix of all splitting fractions 
{A} estimated value of matrix A 
aj,j vector of splitting fractions of flow in a stream leading from i-th to j-th node 
{aj,J estimated value of vector aj,j 

a~?l component of vector aj,j - splitting fractions for d-th component 
F number of mass components 
K number of nodes 
M number of streams 
P j vector of design variables of unit operation of i-th node 
Sj,j specification vector in a stream leading from i-th to j-th node 
S~?] component of vector Sj,j - flow of d-th component 
X vector of independent variables 
Z objective function 

function 
y chosen positive number 
tP vector of constraints 
A~d] total flow rate of d-th component through j-th node 
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